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Abstract

Stock Movement Prediction Leveraging News

Data and Support Vector Machines

This study explores the impact of news headline sentiment and keyword frequency
on short-term stock price movements by integrating them with technical indicators.
Focusing on KOSPI-listed companies in the shipbuilding sector, we extracted indi-
cators such as moving averages, RSI, MACD, and Bollinger Bands from stock data
from the year 2024, and performed sentiment classification on news headlines using
KoFinBERT. Keyword occurrences related to contracts, the U.S., and earnings were
quantified and normalized.

Using these combined features, a Support Vector Machine (SVM) model was
trained to classify next-day stock movements into two categories: significant rise
(Class 1) and significant fall (Class 0). While the model showed limited performance
for Class 1 due to class imbalance, it achieved relatively strong results for Class 0
(precision 0.76, recall 0.80), suggesting that sentiment and technical signals are useful
in detecting stable price patterns. These findings highlight the potential of combining
textual and market data for stock prediction and the need for improved methods to

address data imbalance.

Keywords: News Headlines, Sentiment Analysis, Stock Price Prediction,
Support Vector Machine (SVM), Technical Indicators




Chapter 1

Introduction

In the stock market, information plays a vital role in investor decision-making.
In particular, unstructured text data, for instance news headlines, can reflect market
sentiment and expectations, providing useful signals for stock price forecasting [1].
Recent studies have highlighted that not only the content of news but also its senti-
ment and frequency can influence investor behavior and market movements [2].

In Korea, market reactions to news are often asymmetric, and vary by sector,
with industries like shipbuilding showing high sensitivity to external information [3].
This study focuses on the relationship between news sentiment and short-term stock
trends within the Korean shipbuilding industry.

Figure (1| presents a comparison between the News Sentiment Index (NSI), pub-
lished by the Bank of Korea, and the KOSPI closing price. The correlation between
the two suggests that aggregate news sentiment aligns closely with market expecta-

tions.
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Figure 1: KOSPI and NSI Figure 2: Closing Price and News Count




Based on the observation of the KOSPI closing price, it became evident that news
may be influenced by overall market movements. To narrow the scope of analysis from
the entire stock market, this study focuses on HD KSOE, a leading shipbuilding
company listed on the KOSPI, as a case example. Figure [2| presents a comparison
between the number of news headlines and the company’s daily closing price in 2024.
While a noticeable spike in news volume occurred in mid-July the number of news
articles alone was not sufficient to fully explain the price movement. This highlighted

the need for a more refined and quantitative approach to analysis.
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Figure 3: Closing Price and Positive Figure 4: Closing Price and Negative
News Count News Count

To address this limitation, we apply KoFinBERT, a domain-specific sentiment
analysis model trained on Korean financial news, to classify headlines as positive,
neutral, or negative. As shown in Figures and [ certain time periods reveal
a tendency for positive headlines to precede or accompany price increases. On the
other hand, negative news appears consistently across the entire period, but its direct
correlation with price decreases is weaker. These findings suggest that stock price
reactions may be asymmetric with respect to news sentiment, underscoring the need
for prediction models that incorporate both volume and directional sentiment. The
source code for all experiments is available at https://github.com/SonJongKyu/

news-driven-stock-prediction, allowing for full reproducibility.


https://github.com/SonJongKyu/news-driven-stock-prediction
https://github.com/SonJongKyu/news-driven-stock-prediction

Chapter 2

Data Collection and Feature Engineering

This chapter describes the types of data collected for the study and the rationale
behind their selection. In 2.1 Stock Market Data, we introduce the process of crawling
and preprocessing stock-related information for each company, including the closing
price, price change from the previous day, opening price, high, low, and trading
volume. These variables were cleaned and structured to match the requirements of
the predictive modeling framework. In 2.2 News Data, we present the method for
collecting news data by searching each company name and extracting news titles
and URLs published in 2024. The collected data were further processed through
sentiment classification and normalized using the frequency of specific keywords.

The shipbuilding industry, known for its high sensitivity to news among KOSPI-
listed sectors, was selected as the target industry for this study. Given its strong
dependence on overseas orders, the industry is considered particularly responsive
to global economic trends and policy developments in major economies such as the
United States and China [3].

The analysis period was limited to the year 2024 to ensure the inclusion of data
for all 11 major shipbuilding companies and to reflect the most recent market trends
and corporate responses. This temporal scope allows for a timely and consistent

assessment of the relationship between news events and stock price movements.



2.1 Stock Market Data

This study collected daily stock price data for 11 major shipbuilding-related com-
panies listed on the KOSPI. The companies were selected based on their relevance
to the shipbuilding industry and their classification under related sectors. The stock
price data, including daily closing price, trading volume, and rate of change, were
obtained from the official source of Naver Finance (https://finance.naver.com).

We constructed several technical indicators using stock data crawled from the
official Naver Finance website by querying each company’s stock code. These indica-
tors were selected based on their widespread use in financial analysis and their ability

to capture short-term market dynamics relevant to stock price prediction [4, 5.

Company Name Stock Code
HD Korea Shipbuilding & Offshore Engineering 009540
HD Hyundai Marine Solution 443060
HD Hyundai Marine Engine 071970
HD Hyundai Mipo Dockyard 010620
HD Hyundai Heavy Industries 329180
STX Engine 077970
Samsung Heavy Industries 010140
Sejin Heavy Industries 075580
Korea Carbon 017960
Hanwha Engine 082740
Hanwha Ocean 042660

Table 1: Shipbuilding Companies and Stock Codes

we constructed several technical indicators using stock data crawled from the offi-
cial Naver Finance website by querying each company’s stock code. These indicators
were selected based on their widespread use in financial analysis and their ability to
capture short term market dynamics relevant to stock price prediction.
e MAS5 (5-day Moving Average): Calculates the average of closing prices over the past

five trading days to capture short-term trends. It is useful for identifying persistent
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directional movement in stock prices and helps assess whether a news event occurs
during an ongoing upward or downward trend.

e MA10 (10-day Moving Average): Calculates the average of closing prices over the
past ten trading days to capture medium-term trends. It is useful for identifying per-
sistent directional movement in stock prices and helps assess whether a news event
occurs during an ongoing medium-term upward or downward trend.

e RSI (Relative Strength Index): A momentum-based indicator used to determine
whether a stock is in an overbought or oversold condition. In news-based prediction,
it helps detect potential reversals by signaling when the price may be due for a cor-
rection despite the sentiment of recent news.

e MACD (Moving Average Convergence Divergence): Measures the difference be-
tween short-term and long-term price trends to identify potential turning points. It
is particularly useful in detecting changes that either align with or contradict the
sentiment inferred from news, helping to evaluate whether a market reaction is rein-
forced or diverging from the psychological signal conveyed by the news.

e BB_upper (Bollinger Bands Upper Band): This indicator reflects price volatility
and is used to detect whether a stock is approaching a local peak. When a touch of
the upper band coincides with positive news sentiment, it may signal that the stock
is already overheated, suggesting a possible price correction despite the optimistic
outlook.

These indicators were incorporated into the model as features to enhance its abil-
ity to recognize short-term and mid-term technical patterns, detect trend reversals,
and account for momentum or volatility conditions. Their inclusion allows the predic-
tive framework to integrate not only external news signals but also intrinsic market

behavior, thereby improving classification accuracy for short-term stock movements.



2.2 News Data

News articles were collected by querying each company on Naver, a major Korean
news portal, and extracting all article titles published in the year 2024. The number

of news titles collected per company is summarized as follows:

Company Name News Count
HD Korea Shipbuilding & Offshore Engineering 8,919
HD Hyundai Marine Solution 3,787
HD Hyundai Marine Engine 1,301
HD Hyundai Mipo Dockyard 3,989
HD Hyundai Heavy Industries 13,561
STX Engine 841
Samsung Heavy Industries 8,320
Sejin Heavy Industries 691
Korea Carbon 965
Hanwha Engine 4,876
Hanwha Ocean 16,126

Table 2: Company name and News counts

Since the collected news data consisted of unstructured text in the form of article
titles, the first preprocessing step was sentiment classification. This step aimed to
quantify the emotional tone of each headline using a pretrained Korean financial
language model.

We used KoFinBERT, a domain-specific language model trained on financial
news, to classify each headline into positive, neutral, or negative sentiment. This ap-
proach is similar to recent studies that employ contextual embeddings and sentiment
classification to model the influence of news on stock behavior [0, [7].

Table |3|shows an example of the sentiment classification process using the KoF'in-
BERT model. The input headline is first tokenized into subword units, and each token

is evaluated for sentiment polarity by the model.



In this example, negative and positive cues such as “E2FAA]” and “m| A%

are identified, and the overall sentiment is classified as “Positive” with a confidence
score of 81.00%.

Step Description
News Title ZA . &AA, ESAA Zo| 1 u|d A S dich
Tokenization Al SR dAN, =BHEA, el AR
L_/_TE:? qTHE‘I_

- BGAA — -1 (negative)
KoFinBERT Model _ ‘%O]_ﬂ_’ -0 (neutral)
- ‘a)@ AR — 41 (positive)
- ‘&5 — +1 (positive)

Sentiment Positive

Confidence Score 81.00%

Table 3: Example of Sentiment Classification Process Using KoFinBERT

Second, we found keywords related to ‘Contract’, ‘Earnings’, and ‘USA’ in each
news title. To capture topic-specific signals from news headlines, three keyword
groups were manually defined based on domain knowledge of the shipbuilding in-
dustry:

e Contract-related: “order”, “contract”, “delivery”, “supply”, “export”
e Earnings-related: “earnings”, “profit”, “sales”, “surplus”, “deficit”
e U.S.-related: “United States”, “U.S.”, “Federal Reserve”, “interest rate”, “inflation”

In addition to sentiment analysis, we extracted keyword features related to con-
tracts, earnings, and the U.S. economy. These keyword groups were selected based
on their economic significance and known macroeconomic drivers in the shipbuilding
industry. Specifically, contract-related terms were chosen because they directly reflect
revenue-generating activities; earnings-related keywords represent key indicators of
corporate performance; and U.S. all of which significantly affect the shipbuilding

sector.



To numerically capture the topical relevance of these keywords within each head-
line, we calculated TF-IDF (Term Frequency—Inverse Document Frequency) scores.
TF-IDF quantifies the relative importance of a word within a document and across
the corpus, with higher scores indicating greater contribution to meaning. This ap-
proach allowed us to transform keyword occurrences into weighted feature values
that reflect their contextual prominence [§].

This multi-faceted representation of news data served as a foundation for the

predictive model.



Chapter 3

Methodology

3.1 Support Vector Machine

This study develops a binary classification model to predict short-term stock price
movements by leveraging both news data and technical indicators from shipbuilding
companies listed on the KOSPI. Accurate prediction requires algorithms capable
of distinguishing between upward and downward trends, especially when combining
structured indicators with unstructured news sentiment. Support Vector Machine
(SVM) was selected for its strong performance in high-dimensional spaces and its
ability to handle complex feature interactions.

The dataset includes 15 features, combining sentiment polarity scores, technical
indicators (e.g., MA, RSI, MACD), and TF-IDF-based keyword frequencies. SVM is
well-suited for mixed feature spaces and has shown robust generalization on relatively
small datasets.

Prior research supports the use of SVM in financial forecasting. Zhen et al.[5]
integrated investor sentiment and feature selection into an SVM model, while Fu
and Zhang[8] combined sentiment analysis with technical indicators, achieving strong
results in volatile markets. These studies reinforce the methodological foundation of

this work.



3.2 Problem Definition

This study aims to formulate a binary classification model to predict short-term
stock price movements by utilizing news data and technical indicators of major listed
companies in the shipbuilding industry. The prediction target is the one-day-ahead
rate of change, and to focus on economically meaningful fluctuations, we applied a
threshold-based labeling scheme.

Specifically, samples showing a price increase of +4% or more on the next day
were labeled as Class 1 (upward movement), while those with a decrease of -1% or
more were labeled as Class 0 (downward movement). This asymmetric thresholding
was chosen for two main reasons. First, in the shipbuilding sector, price surges driven
by large contracts or global policy announcements tend to be abrupt and significant,
whereas declines often unfold more gradually. Second, price changes within the range
of -1% to +4% are more likely to reflect noise or routine market activity, rather than
clear reactions to news events.

To enhance the model’s ability to learn from meaningful patterns, we excluded
these intermediate-range samples from the training set. By doing so, the classifier
focuses only on high-confidence signals, reducing the risk of confusion from ambiguous
cases.

This thresholding strategy is consistent with the approach of Jin et al.[2], who
framed stock prediction as linking sentiment-labeled news to directional price changes.
It also aligns with Cho and Cho[3], who emphasized the importance of isolating
event-driven effects in financial modeling. Together, these considerations support a
classification framework centered on capturing clear and economically relevant mar-

ket responses.
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3.3 Data Construction and Preprocessing

Two types of data were utilized in this analysis:

e Technical indicator data: Includes features such as closing price, Trading volume,
moving averages (MA), MACD, RSI, and Bollinger Bands.

Company Date price  volume MA5 MAI10 RSI MACD BB_upper
HD KSOE 2024-01-29 113500 112906 114160 111750 53.83 -541.69 118774.84
HD KSOE 2024-01-30 111700 139768 113800 111990 51.05 -600.28 117683.09
HD KSOE 2024-01-31 113500 133430 114220 112900 56.50 -495.76 117683.09
HD KSOE 2024-02-01 114700 160045 113980 113860 57.29 -312.49 117981.76
HD KSOE 2024-02-02 119100 315586 114500 114440 58.06 185.66 119206.52
HD KSOE 2024-02-05 123000 302387 116400 115280 67.34 884.93 121276.67
HD KSOE 2024-02-06 120400 188255 118140 115970 71.51 1215.31 122380.13
HD KSOE 2024-02-07 121400 152311 119720 116970 71.73 1540.08 123552.43
STX Engine  2024-06-05 14190 127141 13756 13573 43.62 53.94  14715.09
STX Engine  2024-06-07 14350 126858 13996 13680 58.25 100.15  14784.04
STX Engine  2024-06-10 15380 333380 14414 13853 70.22 217.37  15080.16
STX Engine 2024-06-11 14980 138864 14584 13998 67.22 274.83  15224.66
STX Engine 2024-06-12 15700 289616 14920 14238 77.85 374.15  15492.27
STX Engine  2024-06-13 15580 150963 15198 14477 75.22 438.12  15694.36
STX Engine  2024-06-14 15780 406239 15484 14740 74.26 499.21  15906.24
STX Engine  2024-06-17 15980 132619 15604 15009 77.40 557.33  16194.48
Hanwha Ocean 2024-12-11 33100 2889057 31840 33165 42.03 -359.31 40684.12
Hanwha Ocean 2024-12-12 33150 3246708 31960 32880 33.33 -346.05 40141.15
Hanwha Ocean 2024-12-13 34050 2956401 32390 32785 38.06 -259.92  39529.43
Hanwha Ocean 2024-12-16 33700 1963347 33160 32835 41.84 -217.40 39063.90
Hanwha Ocean 2024-12-17 32300 2384863 33260 32615 36.42 -293.29 38775.26
Hanwha Ocean 2024-12-18 32350 4303943 33110 32475 37.63 -345.41 38326.02
Hanwha Ocean 2024-12-19 32250 3341661 32930 32445 40.07 -390.29 38133.10
Hanwha Ocean 2024-12-20 33400 6391430 32800 32595 50.76 -329.27 37393.34

Table 4: Technical indicator data
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e News-based feature data: including the number of news articles, sentiment classi-
fication results (positive, negative), and TF-IDF-based keyword frequencies related

to terms such as ”contract,” ”earnings,” and ”United States.”

Date Company Positive Ratio Negative Ratio Contract Earnings US
2024-01-01 HD KSOE 0.6190 0.3810 0.0214 0 0
2024-01-01 HD MS 0.7500 0.2500 0 0 0
2024-01-01 HD ME 1.0000 0 0 0 0
2024-01-01 HD Hyundai Mipo 0.8333 0.1667 0 0 0
2024-01-01 HD HHI 0.7826 0.2174 0.0088 0 0
2024-01-01 STX Engine 0 1.0000 0 0 0
2024-01-01 SHI 0.7143 0.2857 0.0103 0 0
2024-01-01 Sejin Heavy 0.6667 0.3333 0 0 0
2024-01-01 Korea Carbon 0.5000 0.5000 0 0 0
2024-01-01  Hanwha Engine 0.4000 0.6000 0.0827 0 0
2024-01-01 Hanwha Ocean 0.6400 0.3600 0.0076 0 0
2024-06-17 HD KSOE 0.7600 0.2400 0.0405 0 0
2024-06-17 HD MS 0.9000 0.1000 0 0.0186 0
2024-06-17 HD ME 1.0000 0 0 0 0
2024-06-17 HD Hyundai Mipo 0.7500 0.2500 0.2343 0 0
2024-06-17 HD HHI 0.8293 0.1707 0.1531 0 0
2024-06-17 SHI 0.7895 0.2105 0.1346 0.0095 0
2024-06-17 Sejin Heavy 1.0000 0 0.3239 0 0
2024-06-17 Korea Carbon 0.6667 0.3333 0 0 0
2024-06-17  Hanwha Engine 0.7143 0.2857 0 0 0
2024-06-17  Hanwha Ocean 0.7188 0.2813 0.0711 0.0212 0
2024-12-31 HD KSOE 0.5882 0.4118 0 0.0332 0
2024-12-31 HD MS 0.6667 0.3333 0 0 0
2024-12-31 HD Hyundai Mipo 0.8182 0.1818 0 0 0
2024-12-31 HD HHI 0.7368 0.2632 0.0305 0.0132 0
2024-12-31 SHI 0.6471 0.3529 0.0229 0 0
2024-12-31  Hanwha Engine 0.8000 0.2000 0 0 0
2024-12-31 Hanwha Ocean 0.8148 0.1852 0.0236 0 0

Table 5: News-based feature data
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The two datasets were merged based on date and company name. Missing values
generated during the merging process were imputed with zeros. From the combined
dataset, a total of 15 key features encompassing both technical and textual informa-
tion were selected for model training.

To eliminate differences in feature scale, Z-score normalization was performed
using StandardScaler. Given the temporal nature of the dataset, we employed a
time-based partitioning strategy: the data was sorted chronologically and split into
70% for training and 30% for testing. This method helps prevent data leakage from
future information and allows the model to be evaluated on truly unseen, temporally
subsequent data—closely simulating real-world forecasting scenarios.

The choice of a 30% testing split balances two key considerations. First, it secures
a sufficiently large training set to enable the model to learn meaningful patterns from
historical data. Second, it retains a significant testing period that captures diverse
market conditions—including potential regime shifts, volatility clusters, and senti-
ment changes—which are crucial for robust evaluation in financial contexts. Using a
non-trivial portion of temporally future data simulates realistic forecasting scenarios
and enhances the reliability of performance metrics such as accuracy, precision, and
recall.

This design follows common best practices in financial machine learning, where
time-aware validation is critical for developing deployable models [?, ?]. By testing
on a future window that is representative of actual use cases, the model’s predictive
power can be more accurately assessed.

The process of preprocessing news data—through sentiment classification, TF-
IDF transformation, and normalization—aligns with recent best practices in explain-
able financial AI. Sun and Li [9] proposed a similar preprocessing pipeline that cap-
tures intraday and post-market sentiment to enhance the transparency of prediction
models. Furthermore, Leone et al. [10] illustrated the importance of sentiment refine-
ment using ESG news, underscoring the value of careful feature engineering when

integrating unstructured textual inputs.
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3.4 Synthetic Minority Over-sampling Technique

In the original dataset used to train the model, a significant class imbalance was
observed between the two target classes. As can be seen in the table [0 the number
of samples classified as class 1 (indicating an upward movement in stock price) (183)
was significantly lower than class 0 (536), indicating a downward or insignificant
movement. This imbalance hinders the ability of the classifier to correctly identify

the minority class, resulting in high precision but low recall for class 1.

Class Before SMOTE After SMOTE

Class 0 H36 536
Class 1 183 536

Table 6: Class distribution before and after SMOTE

To address this issue, the Synthetic Minority Over-sampling Technique (SMOTE)
was applied to the training dataset. SMOTE is a data augmentation technique that
generates synthetic samples of the minority class by interpolating between existing
examples and their k-nearest neighbors in the feature space. In this study, the number
of neighbors was set to k = 3 to generate diverse and reliable synthetic data points.

As a result of applying SMOTE, the class distribution was balanced, with both
Class 0 and Class 1 consisting of 536 instances, as reflected in Table [6] This bal-
anced training set allowed the Support Vector Machine (SVM) model—particularly
sensitive to data distribution and margin optimization—to better learn discrimina-
tive patterns from both classes. After resampling, the model was trained using a
linear kernel SVM and subsequently evaluated on the original (imbalanced) test set
to ensure realistic generalization performance.

Although the primary focus of Zhen et al. [5] was on sentiment and multi-feature
fusion, their work also highlights the challenges posed by class imbalance in stock
prediction. Their study supports the need for data balancing techniques such as

SMOTE when building robust classifiers in financial applications.
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3.5 Performance Metrics

In addition to accuracy, the performance of the classification model was evaluated
using the classification_report() function provided by the Scikit-learn library.
This function generates a detailed summary of the model’s performance across each
class, including the metrics of precision, recall, F1-score, and support. These metrics
are especially useful for evaluating models trained on imbalanced datasets, such as
those commonly found in financial forecasting.

e Precision: The proportion of predicted positive cases that were actually positive.

. o . _ TP
It is defined as Precision = 75 75.
e Recall: The proportion of actual positive cases that were correctly identified by the
I _ TP
model. It is given by Recall = 7777~
e Fl-score: The harmonic mean of precision and recall, calculated as F1 = 2 -

Precision-Recall
Precision+Recall *

particularly under class imbalance.

This metric provides a balanced measure of a model’s performance,

Actual \ Predicted Positive (1) Negative (0)
Positive (1) TP (True Positive) FN (False Negative)
Negative (0) FP (False Positive) TN (True Negative)

Table 7: Confusion Matrix Terminology

These metrics were selected to offer a more nuanced evaluation of the classification
model, particularly in the context of financial data where minority class prediction
is critical.

The choice of evaluation metrics is consistent with prior studies such as Srinivas
et al. [7] and Sun and Li [9], which emphasize precision, recall, and F1-score when
dealing with imbalanced financial datasets. These metrics provide a more informa-
tive assessment than accuracy alone, especially when minority classes carry greater

financial relevance.
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Chapter 4

Experimental Results and Analysis

The performance of the model was evaluated based on the test dataset using

classification metrics. The results are as follows:

Precision Recall F1l-score Support

0 0.76 0.80 0.78 234

1 0.26 0.21 0.23 75
Accuracy 0.66 309
Macro avg 0.51 0.51 0.51 309
Weighted avg 0.64 0.66 0.65 309

Table 8: Classification Report for SVM Model

The classification report reveals a notable disparity in performance between the
two classes. For Class 0, which represents downward stock movements, the model
achieved a precision of 0.76, recall of 0.80, and an Fl-score of 0.78. These results
indicate that the model is capable of identifying downward movements with a high
degree of accuracy and consistency. In contrast, Class 1, corresponding to upward
movements, yielded significantly lower performance, with a precision of 0.26, recall
of 0.21, and F1-score of 0.23.

These results indicate that the model performed better in predicting the down-

ward movement class (Class 0), while it struggled with the upward movement class
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(Class 1).

There are two main reasons that may explain the relatively higher performance
for Class 0. First, negative news tends to contain clearer sentiment expressions. News
related to stock declines often includes explicitly negative language (e.g., "loss,” ”de-
lay,” ”risk”), which the model may find easier to learn and classify. Second, the
model’s performance appears to have been affected by class imbalance. Although
SMOTE was applied to balance the training dataset, Class 1 remained underrepre-
sented in the test set, which may have limited the model’s ability to generalize well
for that class.

To better understand the contribution of each input feature to the classification
outcome, we extracted the feature importance values from the trained linear SVM
model. Since the linear SVM defines a decision boundary using a linear combination
of feature weights, the absolute value of each coefficient can be interpreted as the
relative importance of the corresponding feature. Figure 5 illustrates the feature

importance based on the absolute values of the learned coefficients.

Close Price
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Neg. Sentiment Ratio
MATO

MNegative

Volume

Neutral

TF-IDF_US

Positive

RSI
TF-IDF_Earnings
MACD

TF-IDF_Contract

k T T T T
0o 05 10 15 20

Figure 5: Feature Importance from Linear SVM Coeflicients
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As shown in the figure titled ” Feature Importance from Linear SVM Coefficients”,
the most influential feature was Close price, followed by Bollinger Band upper bound
(BB Upper) and moving averages (MA5 and MA10). Among the news-based vari-
ables, positive and negative sentiment ratios and TF-IDF scores related to the U.S.
and contract keywords demonstrated moderate impact, although they were gener-
ally less influential than technical indicators. This result suggests that historical price
patterns had a more dominant role in shaping the model’s predictions compared to
text-derived features in this setting.

The interpretability of sentiment features remains an important consideration.
Leone et al. [10] examined how sentiment scores—particularly those related to ESG
factors—can influence model decision-making, even if their relative weight is lower
than that of numerical indicators. This points to the potential of improving sentiment
signal quality or interpretability through domain adaptation or feature refinement
in future studies. Additionally, Lee et al. [I1] demonstrated that integrating features
derived from large language models (LLMs) improved classification performance,

suggesting a potential direction for expanding this framework in future work.
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Chapter 5

Conclusion

This study aimed to explore the predictive power of financial news and technical
indicators on short-term stock price movements, using companies in the shipbuilding
sector listed on the KOSPI. By combining structured market data with sentiment-
annotated news headlines, we constructed a binary classification model that predicts
significant price surges or drops on the following trading day. A linear Support Vec-
tor Machine (SVM) was employed to strike a balance between interpretability and
performance.

The results show that the model performed better in identifying downward price
movements (Class 0), with relatively lower predictive power for upward movements
(Class 1). Feature importance analysis revealed that traditional technical indicators
had a more pronounced impact on the model’s decision boundary than news-derived
features such as sentiment polarity or TF-IDF scores. Nonetheless, sentiment-based
features provided complementary value, especially in highlighting market optimism
or pessimism around specific time periods.

These findings suggest that investor reactions to news may be asymmetrical, and
that negative sentiment tends to manifest more clearly in stock behavior. Moreover,
the persistence of class imbalance in the test set, despite SMOTE adjustment, high-
lights the challenges of modeling minority-class events such as sharp price increases.

Several limitations should be noted. First, the reliance on news headlines alone
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excludes the full textual richness of the articles, potentially omitting important con-
textual clues. Second, the use of static TF-IDF scores may limit the model’s sensi-
tivity to nuanced language changes. Lastly, the analysis focuses on a single year and
a specific industry, which may constrain the generalizability of the findings.

Future research could extend this work by incorporating deep learning models
such as LSTMs or Transformers to better capture sequential dependencies in news
and market data [9, I1]. The integration of large language models (LLMs), as ex-
plored by Lee et al. [11], may also improve feature richness and interpretability in
sentiment-based forecasting. Additionally, combining sentiment signals from multi-
ple sources—such as news, ESG disclosures, and macroeconomic reports—has shown
promise in increasing model robustness [§]. Leone et al. [I0] also emphasize the value
of including ESG and global policy signals as part of the feature space, especially for
industries highly sensitive to geopolitical and environmental developments.

Ultimately, this study demonstrates both the potential and current limitations of
integrating textual sentiment analysis with quantitative market data. While news-
based sentiment adds contextual depth, its predictive influence remains secondary
to historical technical patterns. Nevertheless, a multi-source, multi-modal feature
design holds promise for enhancing predictive accuracy and generalization in future

financial forecasting models.
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Appendix

Zeroth-Order Optimization on Riemannian
Manifolds via Gaussian Smoothing

This appendix addresses a topic in Riemannian zeroth-order optimization, which
is unrelated to the main subject of this thesis but included here as a supplementary

mathematical study by the author.

A Introduction

In this paper, we investigate the problem of zeroth-order optimization for both
smooth and nonsmooth objective functions. In particular, we consider the follow-
ing unconstrained optimization task:

min f(x) (1)

z€R™

where the function f : R® — R may be nonconvex but is assumed to exhibit a certain
level of smoothness.

Our focus lies on the function class C»Y) | which comprises continuously differen-
tiable functions with Lipschitz continuous gradients. A function f € CV satisfies

the condition:

IVf(z) =Vl < Li(f)llz—yll, Vz,yeR" (2)
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where L, (f) denotes the Lipschitz constant of the gradient. This assumption implies

the second-order upper bound:

£~ 1)~ (Vi) -2 < 2Dy veyer )

Furthermore, if the function f satisfies the inequality

F0) 2 fa) + (VS )y — ) + 2y e (@)

for all ,y € R™, then f is said to be strongly convex with parameter L (f).

Such functions are commonly encountered in machine learning and optimization
settings, particularly in scenarios where gradient information is inaccessible or expen-
sive to compute. To address these challenges, we propose zeroth-order optimization
algorithms based on Gaussian smoothing and provide theoretical analysis of their

convergence guarantees.

B Zeroth-Order Optimization

B.1 Gaussian Smoothing

We study zeroth-order optimization in the context of smooth and convex analysis by
applying Gaussian smoothing to the objective function f : R® — R. The smoothed

version f, is defined via convolution with a Gaussian kernel:

of 1
fule) = = | f+ pu)e 27 du (5)
K R
where the normalization constant is given by
— / e alul® gy = _(2”)51 (6)
n [det Bz
For any g > 0, the smoothed function f, is differentiable, with ¢ > 0 serving
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as a smoothing parameter. Notably, since %fR” ue= 21 du = 0 it follows that for a

convex function f with subgradient g € 0f(x),

fule) 2 / (@) + plg,u)le= I du = f(2) (7)

K

In general, the smoothed function f, inherits and often improves upon the ana-

lytical properties of f, particularly when p > 0. For example:
o If f is convex, then so is f,

o If f € CWY then f, € CY and Li(f,) < Li(f), since

IV fule) = VA < / IV (4 ) — V £y 4 g e 190
RTL

< Li(Plle =yl Va,y e R"

(8)
From the definition in @, we also obtain the identity

1 1
ln/ e~ 2Buu) qy = gln(27r) ~3 Indet B.

Differentiating this identity with respect to B yields

1
—/ wule 2l qu = B~ 9)
K Jgn

Taking the trace of both sides after multiplying by B, we obtain

1 1
K / HUHQe’?”””2 du = n. (10)
K Jgn

We frequently require bounds for the moments defined by M, = % [ [l [Pe2 el du.

For the most common cases, we have exact evaluations:

MO @ 1, M2 n (11)
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For other cases, we will apply the following straightforward bounds.

Lemma B.1. Let p > 0. Then the following hold: For p € [0,2],

M, <n? (12)
For p > 2, we have the two-sided bound
n <M, < (p+mn) (13)

Proof. Define ¥(p) := InM,,. Let p = (1 —a) -0+ a2, so that « = § € [0, 1] for
p € [0,2]. By convexity of ¢, we obtain:

T
lnn

b(p) < (1—a)p(0) + ap(2) '

B
N3

which implies M, < n%, establishing the bound in . For p > 2, note that a > 1,
and thus a1 (2) < 9(p), which gives the lower bound M, > n%. To derive the upper
bound for p > 2, fix any 7 € (0,1). For all ¢ > 0, the following inequality holds:

tre—3t" < <£>5 (14)

Te
Applying this to the moment integral, we write:

M, = 1 ||u||pe—%llull2 du — 1/ ||u||1pe—1‘TTHUH2 du
p

D
2Lry / e g — (2)E L
T K \Te n TE (1_7—)5

Minimizing the right-hand side with respect to 7 € (0,1), the minimum is achieved

at 7 = -, Substituting this value yields:

M, < (]'i)g (1+ﬁ)g (1+p)g < (p+n)

e P n

[MIS]

26



We now establish the following approximation bound for the smoothed function.

Theorem B.1. Let f € CWY. Then, for all x € R™,

2

i
[fulz) = f(2)] = - La(f)n. (15)
Proof. Recall that the smoothed function is defined as

1 1
u@) 2 = [ fle+ pue P du,
Rn

while
1

f@==1. fla)e 2l du,

If f is differentiable at x, we may write

fula) = fla) = 1 [ (o ) = f0) = p(VFa) )] e HF d

K

By the O™V assumption (Lipschitz continuity of the gradient), we have

7+ ) = £(x) = (V5 @), )| < ST ()l = 2 La(F)

2
Therefore,
L[ 2~ 3lull®
[fulx) = f@)| < = [ Sp7La(f)|u]"e™2™" du
KR Jrn 2
2
< B\ Li(f) 1 ]| 26310 dug
2 R Jrn
2 2
M Lzl(f> M, 1 L21(f) o
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For any positive p, the smoothed function f, is differentiable. We now derive a
convenient expression for its gradient. To this end, we rewrite the definition by

introducing a change of variables y = x + pu, which yields:

fulw) = — /Rnf<y>e2i2'“”2 dy.

Since both the integrand and its partial derivatives with respect to x are con-

tinuous in (z,y), we may apply differentiation under the integral sign to obtain the

gradient:
1 ~ sz lly—all?
Vi) = ot [ 1@ By — ) ay
Returning to the original variable u = %, we obtain equivalent expressions:

1 — 1 ly—zl2
Vi) = o [ 1w 3 By = aay

1 10,02
= — | flz+ pu)e 2" By du

UK Jrn
1 fla At pu) — f(ﬁ)e_%||u||2Bu du (16)
K Jrr 2
1 ) - fle— Mu)e‘%”“”QBu du
K Jrn H
1 fle ) - fle - ’uu)e’%HUHQBu du
K Jrn 2/,11

Among these, the final symmetric form ((16)) is particularly useful, especially in
practical algorithms such as zeroth-order gradient descent. Interestingly, the gradient
V fu is Lipschitz continuous even when f itself is not differentiable. This enhanced

regularity is a direct consequence of Gaussian smoothing.

28



Lemma B.2. Let f € CY. Then, the gradient of the smoothed function f,. satisfies
the following bound:

IVfu(@) = Vi@ < GLaD) 0+ 372 Ve e R (am)

Proof. Since f € C™V, we can bound the deviation of gradients using the integral
form of Vf,(z):

IVfu(z) = V(@) =

%/ (f(H“Z) —J@) _ (Vf(a:),u>> Bue 32 gy

< L1 p@ ) - £() = p(VF @), e H du,

By the second-order upper bound property of CY functions (Equation (3])), we

have:
7 ) = (&) = V() 0)] < 5 La(F)p

Substituting this into the integral:

L 11112
V5a) = i@ < LD [ uppe i au = B ) 0t

2K RN 2

From the moment bound (Equation ) for p = 3, we know that:
M3 S (n —|— 3)3/2.

Thus, the final bound becomes:

IV fu(@) = V@)l < SLi(f)(n+3)

Finally, we establish one more relationship between the gradients of f and f,,.
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Lemma B.3. Let f € CV. Then, for any x € R™, the gradient of f is bounded by

the smoothed gradient as follows:

IVf@)I* < 2||Vfu(l’>||2+%Lf(f)(n+6)3- (18)

Proof. We begin by decomposing ||V f(z)]|? in terms of the smoothed gradient:

2

IV f()|* = %/H(Vf(gr:),u)BUQ—éllull2 du
= % - [f(z+ pw) — f(z) — (flz + pu) — f(2) — WV (@), u))] Bue 2 du
L ) < @) e,
K Jgn [
_ﬁ - Lf(z + pu) — f(z) = p(V f(z),u)] Bu e 3llul? qq,

Using the inequality ||a — 0||* < 2]|a||* + 2||0]|?, we obtain:

2

L[ flz+ pu) — f(2)

IV f(2)]* <2 H— Bue 2l qy
2|1 () e ||
+ 22 = /Rn [f(x + pu) — f(z) — p(Vf(z),u)] Bue du

The first term on the right is simply 2||V f,(z)||* by Equation (16]). For the second

term, we apply inequality:
2 e
< AVEL + = [ 1ot ) = £@) = (V10,0 e
Rn
Using the second-order smoothness bound (Equation (3)),

7 ) = £() — {9 £ @), 0d] < S TaCF Pl
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SO

2 1 11,012
VI <200 h@IF + 2 (20t ) [ et du

2
= 2| VA @) + 5 L) M.

Finally, from the moment bound (Equation (13])) with p = 6, we have:
MG S (TL + 6)37
which leads to the desired result:

IVF@)I* <2V u(@)]* + %L?(f)(n +6)°%.

B.2 Random Gradient-Free Oracles

Let the random vector u € R"™ follow a Gaussian distribution with correlation oper-

ator B~1. We define the following random gradient-free oracle:

f(x + pu) — f(2)

e Sample a random v € R" and return g, (z) = -Bu  (19)
0

We now derive some useful upper bounds. First, for a function f that is differen-

tiable at a point x, we observe that

lgo(@)1* = (V f (), w)* - Jul® < IVF @) - Jul®

<

Hence, E,(||go(2)]?)

cantly improved.

(n +4)2||V f(2)||*. This bound, however, can be signifi-
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Theorem B.2. If f is differentiable at x, then
Eu([lgo(@)[*) < (n +4) [V f(2)||* (20)
Proof. Let us fix any 7 € (0,1). Then, we have:

m 1 — L2 2
Eu(llgo(x)]?) © — | lulPem= M f (, w)? du

Rn
=L e prg wyze R gy,
R JRrn
2 _
< ] St T
n
2

=——— | flzu?e "l ay
KT(1l—7)"2 e Jrr

The minimum of the right-hand side with respect to 7 is attained at 7, = n%zy

For this value,

1oyt 2 (2 T2
T T n+4\n+4 (n+4)e

Therefore, we obtain the bound:

n+4
K

E.(llgo()[*) < /n f(x, u)Qe—%HuH2 du

If f is differentiable at z, then f'(z,u) = (V f(x),u), and from equation (9], the
result follows immediately. |

Let us now derive a similar bound for the oracle g,.

Theorem B.3. Let function f be convex. If f € CV | then

2

Eu(llg.()]*) < %Lf(f)(n +6)° +2(n + 4|V f ()| (21)
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Proof. Let f € CWY. Since

@+ pu) = f(@) = [f(z + pu) = fz) = 1(V f(2), w) + p(V f(2), u)]?

L2 (B L?) 2490

we obtain:

=
AN

Eu(llg,.(x)II)

IA

1) Eu(llull®) + 2 Eu(llgo(2)[I)

WE
= |

L(f)Ms +2(n + 4|V f()|*

INE
MI’%wl

L(f)(n +6)* + 2(n + 4|V f ()|

Sometimes, it is more convenient to express the right-hand side of inequality
in terms of the gradient of the Gaussian approximation.

Lemma B.4. Let f € CWV. Then, for any x € R™ we have

Eu([lgu(@)I*) < 4(n+ DIV fu(@)|I* + 3p*Li(f) (n + 4)° (22)

Proof. Indeed,

(f (@ + pu) = f(2))® = (f (& + pu) = fulz + pu) = f(z)
+ ful@) + fulz + pu) = fu(2))?
< 2(f(x + pu) — fula + pu) — f(z) + fu())?
+ 2(fule + pu) — fu(x))?
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Note that

(@ + pu) = fu(z + pu) = f(2) + fu(e)] =

fulz + pu) — f(z + pu)| + [ fu(x) — f(2)]
2

2
ELi(f) - n+ S Lu(f)
=W’ Li(f) - n

and

(fu(x + ﬂu) - fu<x>>2 = (fu(x + :uu) - f#(ZL’) - /L<Vfu($),u> + ,U<Vfu(33), u>)2
< 2<fu(x + :uu) - fu(x) - M<Vfu(x)v u>)2
+ 2u2<Vf#(x),u>2

<2 (B L?) + 2T hy o). 0

4
— Ll + 20 )

Applying to the function f,,, we obtain E, ((V f,,(z), u)?||u||*) < (n+4)||V f.(2)].

Hence,

E.(|lg.(x)]*) < /%Eu((f(w + p) — f(2))*[[ul®)

< 22 LY(f)n® Mo + (2 LY (f) Mo + 4(n + )|V fu(2)[1?
< pPLI()(2n° + (n+ 6)%) + 4(n + 4)||V fu (@)
< 3PLA(f)(n +4)° + 4(n + )|V fu(2)])?

It remains to observe that 2n3 + (n + 6)% < 3(n +4)3. [
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B.3 Gaussian Smoothing Gradient Method

We consider the unconstrained convex optimization problem mingcg» f(x), where zg
is the initial guess, hj, denotes the step size, and N represents the number of itera-

tions.

Algorithm 1 Gaussian Smoothing Gradient Method

1: Input: zg, u, hy, N

2: for k=0to N do

3 Sample a random vector u

4: Compute g, (x)) using

5 Update: x11 = @ — higu(xr)
6: end for
7: return ry

The following theorem describes the convergence properties of Algorithm [If when

applied to the problem mingegn f().

Theorem B.4. Let {x;}i>0 be the sequence generated by Algorithm |1 (Gaussian
Smoothing Gradient Method), where f € CY) satisfies the Polyak-Lojasiewicz (PL)
condition with parameters o > 0 and B > 0. Suppose the smoothing parameter > 0,
and define g,(z) as in (19). Let x, be a global minimizer of f.

Then, for any step size hy, < i L

(o) and scalar a > 0, the squared distance to

the optimum satisfies:

g — 2l < (14 eah)[Jag — 2.
hin®
2

2 23
M )+ ) )

+ L3(f)(n +6)? +

where ¢; = OCT/BB

This bound characterizes the trade-off between optimization progress and the ap-

proximation error introduced by zeroth-order smoothing.
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Proof. Let xp41 = x, — hyg, (k) denote the update rule in Algorithm . Then,
[2rar — z]|® = ok — 2 — hgu(2) |2
= [log — 2.]® = 2k (wr — 2o, gu(an)) + hillgu(an) |

Since f, is the smoothed approximation and g, () is an unbiased estimator, we

have:
E [gu(xkﬂ = Vfu(xk>

and therefore:

E(zy, — 24, gu(wr)) = (v — 24, E[g,(2x)])
= <xk’ — T, vf(xk’» + <xk — Ty, v.f;L(xk) - Vf(fﬂk»

1
> 2o = P4 I ) P+ (o 22, Vo) = )
Letting ¢, := Oj’“—fﬂ, the update becomes:
2 2 2y, 2 2 2
lper — 2" < (1= exhu) on — 2™ = —— ﬂIIVf(:vk)II + Bl g (i) |

— Qhk<l‘k — Ty, Vfu(xk) - Vf(l'k»

Using the inequality:
1
a2,V Sylo) = T (ar)) < e (allon = 2+ LIV An) = V@I

and applying bounds from and , we obtain:

2hy,
a—+p

s — 22 < (1= erh)lzg — 2.2 ( - 2hk<n+4>) IV Fa)|?

+h2. “—2L2(f)(n+6)3+@~“—2L2(f)(n+3)3+h al|ry — x|
kool a 4 1 RO Tl
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c1 1

Now setting a = 2 and choosing step size h; < ( we conclude:

2 {(atB)(nt4)’
h2 2 h 2
lowes = 2.l? < (L4 erho) o — 2.2+ | 2H=L2(F)n+ 6)° + - L3(f)(n + 3)°|

From the result of the previous theorem, we obtain the recursive inequality .

Let us define the following quantities:

A = g — 2%,
Ryt 1
D =" 02(8) [he(n +6)2 + —(n +3)*| |
2 2a
so that inequality can be rewritten as
A1 < (14 ahy) A + D, for all k> 0. (24)

We now expand this recurrence relation iteratively:

Al S (1 + Clhk)AO + D,
AQ S (1 + Clhk)Al +D = (1 + Clhk)2A0 + (1 + Clhk)D + D,
Ay < (1 +ethy) Az + D = (1+ crhy)’ Ao + (1 + c1hi)*D + (1 + ¢1hi) D + D,

t—1
Ay < (L4 eh) Ao+ DY (1+crhy).

=0
Applying the geometric series bound:

t—1

Z(l + crhy)! <

Jj=0

(1 -+ Clhk)t -1 < (1 -+ Clhk)t
crhy, o crhy

9
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we obtain the final inequality:

D
A < (1 hi) Ay + —
¢ < (14 crhy) 0+Clhk
t hip? 2, 1 3
2 1
= (14 ) Ag + 2o L2(f) [hk(n +6)*+ —(n+ 3)3] .
2c1 2a

This result shows that the optimization error consists of two components: a geo-
metrically decaying term (1 + ¢1hy)'Ap, and a residual bias term introduced by the

Gaussian smoothing approximation, which scales as O(u?).

C Riemannian Optimization for Zeroth-Order Method

We consider the following Riemannian optimization problem:
min f(z) +r(x), st. reM (26)

where M is a Riemannian submanifold embedded in R", f : M — R is a smooth
and potentially nonconvex function, and r : R® — R is a convex and nonsmooth

function.

Definition C.1 (Riemannian Gradient). Let f be a smooth function defined on
M. The Riemannian gradient gradf(x) is a vector in the tangent space T, M that

satisfies:

d(f(»(1)))

TEE — (v gradf(@)) 1)

t=0

for any v € T, M, where () is a smooth curve on M such that:
T.M ={~(0):v(0) =z, v([-4,0]) C M for some § > 0, ~ is differentiable} .
Recall that in Euclidean space, a function f : R”™ — R is said to be L-smooth if
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for all =,y € R™ it holds that:

1) ~ (@) = (V(a)y — )| < 2w~y (28)

We now introduce the Riemannian analogue of L-smoothness. For that, we first define

a retraction at z € M.

Definition C.2 (Retraction). A retraction mapping R, is a smooth map from the

tangent space T, M to the manifold M satisfying:
R.(0) =z, (29)

where 0 denotes the zero vector in T, M, and the differential of R, at 0 is the identity,
ie.,
dRy(tn)
dt

=a, VaeT, M. (30)

t=0

In particular, the exponential map Exp, is a retraction that generates geodesics.

Assumption 1 (L-retraction-smoothness). There ezists a constant L, > 0 such that
for the function f in problem , the following inequality holds:

F(Rela)) — f(2) ~ (grad f(x),0)| < “2lall’, Vre M, acTM.  (3)

Definition C.3 (Zeroth-Order Riemannian Gradient). Let v = Puy € T, M, where
up ~ N(0,1I,) in R", and P € R™ " is the orthogonal projection matrix onto 7, M.
Then u follows a normal distribution A/(0, PPT) restricted to the tangent space. The
zeroth-order Riemannian gradient estimator is defined as:

f(Ro(pu)) — f(x) ~ [(Ra(pPuo)) — f(2)

gu(x) = . u= P Puy. (32)

We now consider the smooth optimization problem with r = 0, where the ob-
jective function f satisfies Assumption [I] We introduce Z0-RGD, the Zeroth-Order
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Riemannian Gradient Descent method, and analyze its theoretical complexity. The

algorithm is formally described in Algorithm [2]

Algorithm 2 Zeroth-Order Riemannian Gradient Descent(Z0-RGD).

: Input: Initial point o € M, smoothing parameter u, step size «, fixed number
of iteration N.
:fork=0to N —-1do
Sample a standard Gaussian random vector uy in 7),, M via projection.
Compute the zeroth-order gradient g, (x)) by
Update 2p41 = Ry, (—ag,(zk)).
end for

—_

To analyze the behavior of Z0O-RGD, we employ a key geometric tool: a geodesic
triangle formed by the current iterate xy, the next iterate x;,1, and an optimal point
x,. This triangle is illustrated in Figure[6] where each edge corresponds to a geodesic

segment and the interior angle A plays an essential role in the analysis of convergence.

M

—ag, ()

Figure 6: Illustration of the geodesic triangle formed by z., xy, and ;.

Let z441 = Ry, (—ag,(xy)), and consider the geodesic triangle depicted in Fig-
ure [0 with z,,zy, and z441, and sides a = dist(wgs1,24),b = dist(xg, T441), and
¢ = dist(zy, z,). In addition, we have that bccos(A) = (—ag,(zy), Ry ().
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If the points form a geodesic triangle in an Alexandrov space with sectional cur-

vature bounded below by «, then the generalized Law of Cosines gives the inequality:

o2 cy/ ||
~ tanh(cy/|k])

Applying this to our setting yields:

b? 4 ¢ — 2bccos(A).

dist(rsr, 2.)? < dist(er, 2.)” + 20 (gu(w), By (2) + C?llgu @)l (33)

c/F

where ¢ := (eI is the curvature-dependent coefficient.

Theorem C.4. Suppose that f : M — R s geodesically o-strongly conver and L-
smooth with respect to a retraction R, and that the manifold M has curvature lower
bounded by k. Let {zx}_, be the sequence generated by Algorithm @ with fixed step
size o > 0, smoothing parameter p > 0, and let { = % where ¢ = dist(zg, ).
Then, for all k > 0, the iterates satisfy the following recursive inequality:
al?p?(d + 3)3
2w ’

E[dist (2541, .)?] < (1 4 L202%¢ —ao + %) dist (g, 2.,)? + (34)

where w > 0 is a tunable constant, and d is the dimension of the ambient space.

Proof. From inequality and the fact that dist(zy, zx11) = @||gu(zk)||, we have:

dist(zpi1, 2.)* < dist(zy, z,)? + (dist(zg, ha1)” — 2(—agu(zi), R, (z.))

(35)
< dist(wg, ,)? + (dist(zg, Tr11)* + 2a(g, (1), R;kl(x*))

By L-smoothness of f, and noting that gradf(z.) = 0, we obtain:

(dist (g, Try1)? = Cllon — wrpn|]? = || — agradf(z) |2
= a’(|lgrad f(wy) — grad f(z.)|* < L2a*C|ly — .|
= L*o*(dist(zy, 2,)*
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Thus, inequality becomes:
dist(zp11, 7.)* < (14 L2?¢)dist(zy, 7.)* + 2a{g,(z1), R;kl (x4)). (36)
Taking expectation conditioned on x, we get:
Eldist(zy41, 7.)%] < (14 L) dist(zg, 2.)* + 20(E[g,. ()], R, (2.)). (37)
Since f is geodesically strongly convex, it satisfies:
—(grad f(xy), R;kl(m*)) > %dist(xk, r,)? Vo € M (38)
By decomposing the gradient estimator error:

(Elga(ze)], By, (2.)) = (gradf(zi), By (2.)) + (Elgu(ar)] — gradf(ze), Ry, (z.))

k

< st . + [Elg, (1)) — srad f(wi)]| - dist(zy, 2.).
From the zeroth-order approximation bound,
[Elg o)) — rad f(a)| < 22 + 37
Therefore,
E[dist (241, 2.)?] < (1 + L*a?¢ — ao)dist(a, 2,)% + aLu(d + 3)3dist (zg, x.). (39)

Using the inequality 2zy < w:UQ—l—Z(’U—Q with z = y/adist(zx, 7,), y = VaLu(d+3)3/2,

we obtain:

al?u?*(d + 3)3
2w '

aLp(d + 3)**dist (zy, x,) < gadist(a:k, z.)? +
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Substituting into (39)), we conclude:

L2 2 d 3 3
E[dist(zpy1, 2+)?] < (1 + L*a*C —ao + %) dist(zy, .)* + - M2( +3) . (40)
w
[ |
To analyze the long-term behavior of Algorithm [2] define:
L2 2 d 3 3
Ay, = E[dist(zy, 2,)?], D := ol j(d+3) , =0 — Ll — iy
2w 2
From , we obtain the recurrence:
Ak+1 S (1 — CQ@)Ak + D. (41)
Unfolding this recurrence yields:
Al S (]_ — CQOé)AO + D,
Ay < (1= coa)*Ag + (1 — eaa) D + D,
t—1
Ay < (1—c)'Ag+ D Z(l — cpa)).
=0
Using the geometric series bound:
t—1 ' 1
Z(l - CQa)] < —,
- Cox
7=0
we obtain:
D L?p2(d + 3)3
At S (]. — CQO{)tAO + — = (]. — CQO&)tAO —+ & (42)

Coy 2&]62
This result establishes that the expected squared Riemannian distance to the
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global optimum decays geometrically up to an O(u?) bias induced by the smoothing

approximation.

D Numerical Examples

In this section, we illustrate the convergence properties of the proposed Zeroth-
Order Gaussian Smoothing (Z0-GS) and Zeroth-Order Riemannian Gradient Descent
(Z0-RGD) methods. We consider both the Euclidean and Riemannian settings.

Experiment 1 (Euclidean Case): Gaussian Smoothing on Least Squares

We consider the unconstrained convex optimization problem

min £(2) = 3|4z b

zERN 2
where A € R™™ with m = 100, n = 500, and b = Az + w. Here, z ~ N(0,1,)
and w ~ N(0,0.01 - I,,,). We set the smoothing parameter y = 10~%, and perform
N = 200,000 iterations.

To evaluate convergence behavior, we compare three step sizes: hy, € {1078,1077,107°}.
For each step size, the Z0-GS algorithm is repeated 20 times. The empirical mean of
the objective value f(xy) is plotted at logarithmically spaced intervals.

As predicted by theory, a larger step size leads to faster initial convergence, but
may result in higher variance and bias in the final solution due to the noise introduced
by smoothing and stochastic gradient estimation.

Experiment 2 (Riemannian Case): Z0-RGD on the Sphere

We consider the problem of minimizing a geodesically strongly convex function

over the unit sphere S"~! C R", given by

min f(z) = —x'v,
reSn—1

where v € R" is a fixed unit-norm vector. The optimal solution is clearly z, = v,

with minimal value f(z,) = —1.

44



We apply the Z0O-RGD (Zeroth-Order Riemannian Gradient Descent) algorithm
with fixed step sizes o € {0.02,0.05,0.1}, a smoothing parameter p = 0.01, and a
total of N = 5000 iterations.

For each step size, the algorithm is repeated over 10 independent trials. At each
iteration k, we compute the Riemannian distance between the current iterate x; and
the optimal point z,, which is given by dist(zy, z.) = cos™(z] z.).

We plot the empirical mean of the Riemannian distance over iterations. As ex-
pected, larger step sizes lead to faster initial convergence but may result in a larger
steady-state error due to the stochastic nature of gradient estimation and the absence

of line search or adaptivity.
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Figure 7: The convergence behavior of zeroth-order optimization algorithms in Eu-
clidean and Riemannian settings.

(a) presents the empirical average of objective values f(x)) obtained from Algo-
rithm[I]with different step sizes hy, in the Euclidean setting. The observed convergence
is consistent with the theoretical bound established under the Polyak—Lojasiewicz
condition (see Theorem and Inequality (25)).

(b) shows the empirical average of Riemannian distance dist(zy,z.) over iterations
when optimizing over the unit sphere using Algorithm 2] This result aligns with
the convergence behavior predicted by the recursive inequality , under geodesic
strong convexity and retraction-based smoothness (Theorem |C.4)). Both results high-
light the influence of step size on convergence rate and steady-state error in zeroth-
order optimization.
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